Novel zinc-catalytic systems for ring-opening polymerization of ε-caprolactone.

نویسندگان

  • Karolina Żółtowska
  • Marcin Sobczak
  • Ewa Olędzka
چکیده

Polycaprolactone (PCL) is a biodegradable synthetic polymer that is currently widely used in many pharmaceutical and medical applications. In this paper we describe the coordination ring-opening polymerization of ε-caprolactone in the presence of two newly synthesized catalytic systems: diethylzinc/gallic acid and diethylzinc/propyl gallate. The chemical structures of the obtained PCLs were characterized by 1H- or 13C-NMR, FTIR spectroscopy and MALDI TOF mass spectrometry. The average molecular weight of the resulting polyesters was analysed by gel permeation chromatography and a viscosity method. The effects of temperature, reaction time and type of catalytic system on the polymerization process were examined. Linear PCLs with defined average molecular weight were successfully obtained. Importantly, in some cases the presence of macrocyclic products was not observed during the polymerization process. This study provides an effective method for the synthesis of biodegradable polyesters for medical and pharmaceutical applications due to the fact that gallic acid/propyl gallate are commonly used in the pharmaceutical industry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly active zinc alkyl cations for the controlled and immortal ring-opening polymerization of ε-caprolactone.

Zinc alkyl cations supported by N,N-BIAN-type bidentate ligands were found to be highly active in the immortal ROP of ε-caprolactone to yield narrowly disperse and chain length-controlled poly(ε-caprolactone), whether in solution or bulk polymerization conditions.

متن کامل

The catalytic performance of metal complexes immobilized on SBA-15 in the ring opening polymerization of ε-caprolactone with different metals (Ti, Al, Zn and Mg) and immobilization procedures.

A family of heterogeneous catalysts has been prepared by employing different strategies: firstly by direct reaction or grafting of titanium, zinc, aluminium and magnesium precursors with dehydrated SBA-15 and secondly by reaction of the metallic derivatives with a hybrid SBA-15 mesoporous material, which possesses a new covalently bonded linker based on an amino alcohol chelate ligand. These ma...

متن کامل

Formation of epoxide-amine oligo-adducts as OH-functionalized initiators for the ring-opening polymerization of ε-caprolactone

Epoxide-amine oligo-adducts were synthesized via a one-pot microwave assisted heterogeneous catalytic transfer hydrogenation. Accordingly, 4-nitroanisole was reduced under microwave conditions to give 4-aminoanisole which reacted immediately with the diglycidyl ether of bisphenol A in an addition polymerization reaction to yield oligo(amino alcohol)s. The hydroxy groups of the new formed oligom...

متن کامل

Synthesis and structure of a ferric complex of 2,6-di(1H-pyrazol-3-yl)pyridine and its excellent performance in the redox-controlled living ring-opening polymerization of ε-caprolactone.

The reaction of FeCl3 with a pincer ligand, 2,6-di(1H-pyrazol-3-yl)pyridine (bppyH2), produced a mononuclear Fe(III) complex [Fe(bppyH2)Cl3] (1), which could be reduced to the corresponding Fe(II) dichloride complex [Fe(bppyH2)Cl2] (2) by suitable reducing agents such as Cp2Co or Fe powder. 1 and 2 exhibited a reversible transformation from each other with appropriate redox reagents. 1 could be...

متن کامل

Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization.

The synthesis of cyclodextrin-centred star polymers via thiol-ene addition of per-6-thio-β-cyclodextrin (CD-(SH)(7)) with vinyl terminated polymers is described. The obtained thiol-ene product was employed as an initiator for ring opening polymerization (ROP) of ε-caprolactone (ε-CL).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2015